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U(2)-like flavor symmetries and approximate bimaximal neutrino mixing
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Models involving a W2) flavor symmetry, or any of a number of its non-Abelian discrete subgroups, can
explain the observed hierarchy of charged fermion masses and Cabibbo-Kobayashi-Maskawa angles. It is
known that a large neutrino mixing angle connecting second and third generation fields may arise via the
seesaw mechanism in these models, without a fine-tuning of the parameters. Here we show that it is possible
to obtain approximate bimaximal mixing in a class of models witf2)tike Yukawa textures. We find a
minimal form for Dirac and Majorana neutrino mass matrices that leads to two large mixing angles, and show
that our result can quantitatively explain atmospheric neutrino oscillations while accommodating the favored,
large-angle Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem. We demonstrate that these
textures can arise in models by presenting a number of explicit examples.
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. INTRODUCTION to 2@ 1 representations, so that in tensor notation one may
represent the three generations of any matter field=By
New data on neutrino oscillations from experiments such+ F3, whereais a U2) index, andF is Q,U,D,L, or E. A set
as SuperKamiokand¢l] and SNO[2] have provided a of symmetry-breaking fields are introduced consisting gf
means of testing theories of fermion masses. The simple ide8,,, and A,,, where ¢ is a U2) doublet, andS(A) is a
that the observed hierarchies in the quark and charged lept@ymmetric(antisymmetri¢ U(2) triplet (singled. These fields
mass spectrum may be due to the sequential breaking of &re assumed to develop the pattern of vacuum expectation
horizontal symmetry has led to expansive literature on posvalues(VEV'’s),
sible symmetries and symmetry-breaking pattefBs4].

Models based on non-Abelian flavor symmetries such as (¢) (O () (0 O

U(2) are interesting in that Yukawa matrices decompose into M_f: el M_f: 0 e’

a small set of flavor group representations, and the textures

possible after symmetry breaking are often highly restricted. A 0 ,

Hierarchies in these textures are not difficult to obtain, since and Q:( ¢ ) (1.1
each stage of flavor symmetry breaking is associated with a M - 0/

small dimensionless parameter that appears in the low-
energy effective Lagrangiathamely, the ratio of a vacuum Which follows from the sequential symmetry breaking
expectation value to the cutoff of the effective theoiy is

much harder to see how the breaking of a non-Abelian sym- ‘ ¢ :

metry that leads to strictly hierarchical quark and charged U(2) = U(1) —nothing. (1.2
lepton Yukawa matrices can account for the two large mixing

angles suggested by the current solar and atmospheric netis leads to the canonical(P) texture,

trino data[6,7]. In this paper, we will show how this situa-

tion can arise naturally in models with 12)-like” Yukawa 0 die’ 0

textures; we define what we mean by this more explicitly

below. Study of ways in which large neutrino mixing angles Yp~| —die’ dae dse | g 1.3
can arise in (2)-like models is worthwhile since these theo- 0 dse ds

ries can potentially explain all fermion masses and mixing

angles in one consistent framework. wheree~0.02,e'~0.004, andd, - - - ds are order one coef-

Let us briefly review the minimal (2) model[5], which  ficients that are also determined by fitting to the d&faThe
has been described in detail elsewhere in the literatu(®. U parameteg is explained below. Here we have displayégl
is assumed to be a global symmetry that acts across the threice the up quark Yukawa matrix requires additional sup-
standard model generations. Quarks and leptons are assignession factors to explain whyng::mg::my=A*:\2%::1
while my::m.:m=A8:\*:1, where A\=0.22 is the
Cabibbo angle. For example, in 88) X U(2) unified mod-

*Email address: aranda@BUPHY.bu.edu els, combined grand unfied thedi@UT) and flavor symme-
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form as a75 under SU5). However, the presence of an 0 l e g€
tseggﬁ)readjomt field > with (2)/M¢~e€ leads to the viable Mig=| —lie loe  Tse |(HU), L7
0 l,e O
0 u,e'e 0O
Yy~| —ue’e Uy Uge | | (1.4 rs€'? riee’ €
0 use  Us Mgr=| ra€€’ Tr3e € | Ag, (1.8
€' € 0

The ratiom,/m, is fixed by hand through the choice of the

small parameteg [5]. Note that the additional suppression whereAg is the right-handed neutrino mass scale, and

factor multiplying theS and A flavon VEV's can also be are O(1) coefficients. These textures ard2like in that

accommodated in models based on discrete subgroups efch entry is of a size consistent with the two-stage

U(2) without requiring a grand unified embedding. In somesymmetry- breaking pattern in E(L.2); the precise power of

of these modelsé~ € is a prediction of the theor|8]. € or € that appears is determined in this example by the
The feature crucial to the success of th@lmodel is the  details of theT’ group theory. The left-handed Majorana

existence of a () subgroup that rotates first generation mass matrix follows from the seesaw mechanism

fields by a phase. Notice that theentries in Eq(1.3) appear

in the most general way consistent with this symmetry, while M ~M gMgiM/[ ¢ (1.9

the €’ entries which break the () appear only in the first

row and column. The fact that the(U breaking is accom- gnd has the form

plished by the antisymmetric flavoh alone is a dynamical

assumption, at least at the level of the low-energy effective (e'l€)? €'le €'le

theory. From this point of view, there is nothing wrong with , (Hy)?%e

VEV'’s of order e’ M arising, for example, in the first com- Mi~| €'/e 1 1 Ao (110
ponent of a doublet or symmetrically in the off-diagonal €'le 1 R

components o8 We will define a “U(2)-like” model as any

one whose Yukawa matrices decompose into symmetric tripAs promised, a large 2-3 mixing angle has emerged from

let, doublet, and antisymmetric singlet representations, anghitial U(2)-like textures without any adjustment of param-

whose nonvanishing Yukawa entries are of a size consistertters. The 1-2 mixing angle, of ordet/ e, is naturally of the

with the U2) symmetry-breaking pattern given in E4.2).  same size as the Cabibbo angle. By choosingQlig) co-

Let us illustrate this definition with a concrete example.  efficients appropriately, it is possible to numerically enhance
The smallest non-Abelian discrete subgroup 2)vith  this result to obtain the smallest mixing angle values consis-

1-, 2-, and3-dimensional representations, and with the mul-tent with the Mikheyev-Smirnov-Wolfenstein large mixing

tiplication rule 2@ 2~3® 1, is the double tetrahedral group, angle (LMA) allowed parameter region given in Ref].

T'. Models based oG¢=T'XZ3, and the breaking pattern Such solutions were considered in quantitative detail in Ref.

(8,9] [10]. However, the fact that the current data appears to prefer

relatively large mixing angles suggests another possibility:

M is a perturbation about a bimaximal mixing textlité |

that appears at lowest order in the symmetry-breaking pa-

rameters. It is this possibility that we explore in the sections

can exactly reproduce the Yukawa textures of @)unodel  that follow.

when matter fields are assigned to appropriate one- and two-

dimensional representations. The symmétﬁ/is a diagonal Il. APPROXIMATE BIMAXIMAL MIXING
subgroup that provides the desired phase rotation on first

generation fields. Moreover, doublet, triplet, and nontrivial
singletT’ representations can be found that are in one-to-on
correspondence with theé, S andA flavons of the original
U(2) model. In Ref[8], models based oh’ symmetry were

T'XZ3—22 “ nothing (1.5

What is intriguing about the result in E(L.10 is that it is
éuperficially of the form suggested by Hald2] for achiev-
Ing bimaximal mixing:

2
constructed with an additional doublet flavon that affected T e P
only the neutrino mass matrix textures: M~ © 1 1]M,, (2.2
® 1 1

€

<¢V>N(e’) L6
M ' ' where® is a small parameter, ard a characteristic mass
scale. The crucial difference is that tB€1) subblock of the
The pattern of VEV’s ing, is the most general one consis- Haba texture is assumed to be of rank one, up to corrections
tent with Eq. (1.5 and leads to the neutrino mass matrix of order® or smaller. A diagonalization of the largest entries
textureg[ 8] leaves a matrix of the form
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P2 O P we will see how they can also arise in models witf2J
Mo~ @ olm (2.2 symmetry and additional Abelian factors.
LL 0 : We now seek the minimal modifications of E¢2.3) and
P 0 1 (2.4) that provide for a viable phenomenology and are theo-
retically well motivated. To avoid any fine-tuning between
which requires a large 1-2 rotation angle to diagonalize furirreducible symmetric and antisymmetric representations, the
ther. We now demonstrate that it is possible to achieve théirst zero that we choose to lift is the 1-2 entry bf .
Haba texture via the seesaw mechanism {2)like theo-  Hence, we consider the modification
ries.
Our approach is to determine first the minimal number of

entries inM_r and Mig that can reproduce the rank-one 0 lie" 0

subblock of Eq(2.1). We will then perturb about this texture Mig=| —12¢’ 0 O] (Hy), 2.6
by lifting the smallest number of texture zeros that allows for

a viable phenomenology. The only organizing principle that 0 ELIY

we retain in this model-independent analysis is that entries in
the first row and column o, g and M gg must involve the

appropriate power of’ to be consistent with the breaking of
some subgroup that rotates the fields of the first generation

which leads to

by a phase. _ _ 12(e'l€)? 13(€'le) l4l3(€'le)
We begin with the observation that the matrices el 2 (Hy)?
M{ =—| li(e'/e) 17 l1l3 .
r AR
lls(e'le) 1403 12
0 0O O (2.7
MLR: _Ilfl 0 0 <HU> (23)
0 Iz O If we identify €'/ e with &, we obtain a texture of the same
form as Eq.(2.1), with the desired rank-one subblock. Un-
and fortunately, the texture in Eq2.7) is still not viable due to a
) specific relationship between the coefficients: the 1-2 and
0 0 rae 1-3 entries appear in the same ratio as the 2-2 and 2-3
Mrr=| O Trie rse | Ag (2.4)  entries. Diagonalization of the largest elements leaves a ma-
trix of the form
r2€ rzf O
lead via the seesaw to o2
0 0 0 . My~ 0 0 0]Mg (2.9
€ H
Y [ S N R e 0 1
0 Il 12 R

and no large 1-2 mixing angle is obtained. It is necessary to
The subblock has a vanishing determinant, by inspection. lift at least one additional texture zero in order to disrupt this
is clear from Eq.(2.5) that the entries shown in Eq&.3) proportionality of coefficients. We find that the minimal
and(2.4) are a minimal choice; if one sets any of the param-choice, in which only one additional entry is altered, is
eters to zero, one either renddvkzg singular or loses the unique:
large 2-3 mixing angle in the final result. Note also that the
textures in Eqs(2.3) and (2.4) are consistent with the sym-
metry breaking in Eq(1.2), but require one fine-tuning to be 0 0 rae
qbtained: The 1_-2 block dfl| g can arise o_nIy by a s_pecific Mrr=| O Trie roe | Ag,
linear combination of symmetric and antisymmetric flavon

!
VEV’s. In the more realistic textures that follow, such a fine- re’ e 0
tuning will not be required. Finally, we point out that certain
texture zeros, in particular the 3-3 entries\df g andM g, 0 e 1€
do not appear in the simplest formulation of2y models. 1 2
However, as we mentioned earlier, such textures do arise in lg=| —li€" 0O 0 [(Hy).
models based on discrete subgroups (&)|8,9]. In Sec. IV 0 le 0
(2.9
INote that the parametrization in Eq&.3) and (2.4) is com-
pletely general, given that we have not specified the sizemfe’. From here we finally obtain
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12(e'l€)? (13=14l,r /1) (€'le) 11l5(€'l€) ,
€ H
L= (12=14l,r 1 /r5) (€'l €) 12 l1l5 <A”> . (2.10
R
l1l5(€'/€) I3 12
[
We will refer to Eqs(2.9) and(2.10 as our minimal bimaxi- I1. NUMERICAL ANALYSIS

mal mixing textures.

At this point, it is important that we be specific on the  We now study the textures in Eg&.9) and (2.11) nu-
meaning of the zero entries in E@.10. We assume simply merically, and show that atmospheric and large-angle solar
that there are no contributions to these entries at linear ordefeutrino oscillations can be obtained. In the spirit of model
in the symmetry-breaking parameters. As we will see in SeGindependence, we assume a form for the charged lepton

IV, most realistic models imply that texture zeros are lifted atyykawa matrix that arises generically in(2)-like models:
some order in the flavor expansion, unless those entries are

protected by holomorphy. This is of significance to the phe-

nomenological analysis presented in the next section for the 0 cie’ 0

following reason: While the ratidd m3y/Amj~ e?/e'?~25 0

that follows from Eq.(2.10 is naturally of the right size to Y ~| —Ci€’" 3Cze Cze | ¢&. (3.
account for atmospheric and LMA solar neutrino oscilla- 0 C4e Cs

tions, the experimentally preferred value @b is noticeably

less than 45°. Corrections to the zero entries allow us nu-

merically to obtain mixing angles consistent with the al-The factor of 3 that multiplies, is the famous one sug-
lowed 95% confidence region. In particular, we will Study gested by Georgi and Jar|sk(ﬁg3], and arises as a conse-

the more general form guence of grand unified group theory. We fit to leptonic ob-
0 0 1€ servables while fixinge=0.02 ande’ =0.004; these are the
preferred values obtained in fitting E@..3) and Eq.(1.4) to
Mre=| 0 Ti€e T2€ | Ag, guark masses and Cabibbo-Kobayashi-Maskawa angles. This
re' rpe rae? constrained fit is a reasonable approximation to a more in-
volved global one, given the relatively large experimental
0 PT PY- uncertainty on each of the neutrino observables.
Mig=| —li& 0 0 |(Hy), We assume that the t_exturM;LL and Y, are defined at
0 e 0 some high scale, which we take to b#g =2

2.19) X 10'® GeV, and perform a renormalization group analysis
' of the gauge and Yukawa couplings. We do this by solving
since the higher-ordar, entry is quite effective at allowing the one-loop renormalization group equatiéR&E’s) of the
adjustment off,,, and is easily accommodated in realistic minimal supersymmetric standard mod&ISSM) [14] from
models. It is worth pointing out that (@)-like values fore Mgur down to the electroweak scale taken to b
and e’ are not consistent with the LOW or vacuum oscilla- =175 GeV.
tion solutions to the solar neutrino problem, since each re- Values of the gauge couplings ®tgyr are obtained by
quires a value ofAm3y/Am3, that is much larger than that starting with the precision values extracted at the sthje
predicted from Eq(2.10. [15]:

TABLE |. Experimental values versus fit central values for observables using the inputs of Table II.
Masses are in MeV and all other quantities are dimensionless. Error ranges indicate the larger of experimental
or 1% theoretical uncertainties, as described in the text.

Observable Experimental value FitA Fit B FitC FitD
Me 0.511+1% 0.512 0.511 0.511 0.512
m, 106+ 1% 106 106 106 106
m, 1777+ 1% 1778 1777 1778 1777
AmiJAam?, 4-200 40 34 35 42
In(Amby/ Am3,) 3.34-0.98 3.7 35 3.6 37
tarf 6y, 0.20-0.90 0.89 0.66 0.66 0.88
Sif26,5 >0.88 0.94 0.93 0.94 0.93
Sif26,5 <0.1-0.3 0.24 0.01 0.04 0.24
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vy, ) 2
a7 3,
Ay, (3.5

a; }(M5)=59.99+0.04,

Ax?=
a, {(Mz)=29.57+0.03,
to x?, as usual. There are six observabléisree charged
agl(Mz)=8.40t 0.13. (3.2 lepton masses, two neutrino mixing angles, and one neutrino
mass ratip and 11 parameters ; on the surface, it seems
The gauge couplings are run from; to m; using the one- that the fit is always under-constrained. However, our de-
loop standard model RGE’s, and then framto Mgy using  mand that the parametekslie near unity imposes additional
the one-loop MSSM RGE'’s. The RGE for the neutrino Ma-restrictions, which we include by adding termsy® of the
jorana mass matris | was computed in Ref.16] and is  form
included here in order to complete the RGE evolution for all
observables. , [ In[kil
In order to perform the fits we incorporate experimental X =\ Tn3”
and theoretical uncertainties on the observables. For the
charged leptons, they are either those appearing in[REf.  for eachi. Thus, the parameteks are effectively no longer
or 1% of the central value of the given datum, whichever isfree, but are to be treated analogously to pieces of data, each
larger. The latter, theoretical uncertainty takes into accounof which contributes one unit tg? if it is as large as 3 or as
that two-loop corrections to the running and possible highsmall as 1/3. Thus, the value of?,, determining a “good”
scale threshold corrections have been neglected. The lowit is 6, since there are six pieces of true data and effectively

2
(3.6

energy neutrino observables are taken to be no unconstrainedit parameters. We find that it is not diffi-
cult to obtain parameterk; that work, as one can see in
2
m3s3 Tables | and II.
4< m2 <200, For each fit shown a value of the mixing andglg; was
12 obtained. While there is no experimental evidence for 1-3
SirP26..>0.88, neutrino o§C|IIat|ons, an evgntual positive s[gnal could help
2 to distinguish between possible models. In Fig. 1, we plot the
2 . . .
0.2<tarf6,,<0.9, (3.3 values off,5 vs x“ for a number of different fits. Each dot in

the figure corresponds to a different set of randomly gener-
which were extracted from RefE5,17]. Notice that we only ~ ated initial values for the parametdss i.e., a different local
need to reproduce the ratidm2yAm2, since the right- Minimum of thex? function. We compare this to the bound
handed neutrino scalkg is freely adjustable. For the sake of Siff2613<0.1-0.3 [18], which is indicated in the figure by
having meaningful uncertainties, a parameter whose lowehrizontal lines. The dots correspond to fits wheke is
bound is much smaller than its upper bound is converted intg20Ve the 95% C.L. bound. Figure 2 shows the fits with a

its logarithm. Instead of Eq3.3), we use x°<15.
M3, IV. MODELS
In 5| =3.34£0.98, - .

Am3, We now demonstrate that it is possible to construct mod-

els that realize the textures studied numerically in the previ-
Sinf26,3=0.94+0.03, ous section. We aim for the basic forms
tarf0,,=0.55+ 0.18. (3.4) 0 0 rpe
M RR™ 0 rlé r2€ AR s

In order to determine whether one can find a choice of pa-

rameters(generically denoted bi;) which areO(1) and at rpe’ rze 0
the same time reproduce the values of observables, we per- , ,
form a x? minimization. The full analysis consists of choos- 0 lie" o€
ing initial values for theO(1) coefficientsk;, for fixed? M{g=| —lie’ O 0 |(Hy).
tang, running the RGE’s down ton,, and comparing ob- 0 l.e O
; . ) 3
servables with their experimental values to compyfe (4.2
Then, the parametells are adjusted and the procedure re-
peated until a minimum of? is obtained. As mentioned earlier, it will require more than just2)y

Our x? function assumes a somewhat nonstandard formsymmetry to account for these textures. For one, there is no
Lepton masses and neutrino mixing angles are converted favariant 3-3 entry in each matrix, as one would expect in a
Yukawa couplingyP+ Ay;, and contribute an amount minimal U(2) model with the generations assigned2 1

representations. Moreover, these textures imply the existence

2We work with tang= 3. Qualitatively, our results are insensitive
to changes in tap of order unity. 3The choice of 3 is a matter of taste.

013011-5



ARANDA, CARONE, AND MEADE

PHYSICAL REVIEW D 65013011

TABLE Il. O(1) coefficients from four representative fits with @ 3.0. The observables computed
using these values are shown in Table I. Fit D corresponds to the minywd case.

Fit A B C D

X2 3.451421 2.98341084 3.72175717 8.29507256
Cy 0.47674 0.476627409 0.476760209 0.476436228
() 0.46998 —0.465719551 —0.440337121 0.462245226
C3 0.99173 0.82251513 1.39617729 0.9901492
Cy 1.0226 0.89786166 0.76331389 0.559998155
Cg 0.45998 —0.460312963 0.46006763 0.460330635
I 1.3715 1.1396178 0.674030304 0.434771806
P —0.51276 1.21720707 1.68183231 1.90096331
I3 1.4191 1.14355946 0.920410395 0.600989103
ry 1.1785 1.16333687 1.38230038 0.481762707
ry 0.36925 0.381390542 0.589898586 0.280204356
rs 2.2979 —1.69190395 —2.8438561 0.0

of three doublet fields, with distinct couplings, whilg2y  be obtained using non-Abelian discrete subgroups @).U
provides only for one. The simplest approach, which we willWe present examples that do and do not require a unified
utilize here for the purposes of providing an existence proofgauge group, respectively.

is to extend the () symmetry by an additional Abelian

factor[19]. At the end, we describe how similar models may A. SU(5)XU(2)X Zs

In this model we let the superfield3, U, D, L,andE

. transform as
035 - % -
. p—_— 2001, (4.2
025 0 e .s . 1 where the subscript indicates tf& charge(i.e., the sub-
* e scripts add modulo )5 The Higgs fieldsH p transform as
A o Sin’(26,,) = 0.1
015 |- . . .
S. . 035 1
: . . °
0.05 - ,": T ’ * ] . Sin’(zem)fo.3
2z ' . . 0.25 - * * . o g
é '.. . il @ ° . : .
g .' L] .'.
S 005 A el iy AA Sin%(26,) = 0.1
=3 ‘." 5.0- . '. . -' .. 0.15 - . . R
015 - 0 " . . .
‘e ° . u" 2 « % L] 0
) - ., on Sin“(20,,) = 0.1 0.05 |- . . . ° |
025 L ,° $e eyt ° . 1 B o«
S 0‘:-' o - -§ L o o ° .« ® B
et e . = n £ 005 - AB . . . . ) B
* Sin’(20,) =03 2 . - f . et R
035 - 1 “ tAc, L, LT
015 - o g Ee * R
. . ‘ Sin*(20,) = 0.1
_0.45 L L Il L Il L L L L L Il 1 L L . L] . L] ) ®
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 . .
'y 025 - . . “ . . .
. D = e *
FIG. 1. Values off3 vs x? for 202 different randomly generated . 'Sin’(zem)=0.3
fits. The horizontal lines are the bounds discussed in the text. Dots .35 - 4
correspond to fits in which all observables are within the desired
experimental 95% C.L. regions for atmospheric and LMA solar
neutrino oscillations. Squares correspond to fits that had,.,a -0.45 : % %

slightly above the upper bound for the LMA solution. The three 0 ©
triangles correspond to the fits A, B, and C, and the diamond is the

best fit withr3=0, i.e., fit D in the text. FIG. 2. Here we show the fits with g?<15.
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trivial singlets under both [2) andZs. In addition, there is a issue further in this paper. For some discussion of possible
set of “ordinary” flavons that ar&s singlets, but transform flavon potentials in (2) models, see Ref20]. Finally, we

under SU5) as follows: point out that the presence of additional fields with vacuum
expectation values can perturb these textures; this is not un-
So~30~ 75, likely given that additional fields are usually required in con-
structing a realistic flavon potential. As an example, the pres-
Ao~1lo~1, ence of a doublep, transforming a®, with ane VEV alters
none of these textures at lowest ordéinlike SU?2), the 2
bdo~2p~ 1. 4.3

andfrepresentations are distinctdowever, the product

These assignments allow us to reproduce the conventiona, s~ 1, provides thee? perturbation in the 3-3 entry of
Yukawa textures of the unified SU(%)U(2) model. The Mgg considered in the numerical analysis.

desired neutrino textures are obtained by introducing right-

handed neutrinos transforming nontrivially under fefac- B. U(2)XU(1)

tor:
Here we show that the inclusion of an additionalllJ

VR~ 2,01,. (4.4 symmetry is sufficient for constructing viable models, even if
_ _ _ _ there is no unified gauge group. Aside from predicting our
The neutrino Dirac and Majorana mass matrices decomposgesired textures, Eg4.1), we now must also account for the

under this symmetry as additional suppression factor Iy, discussed in the Intro-
duction, that originated previously from the &) transfor-
_ [3581s] [2] _ [3:] [2] mation properties of the flavons. We accomplish this by al-
LR 2 [11) RRA12 [1])° lowing the charged fermions to transform nontrivially under
4 the additional symmetry. We let
We introduce the S(5)-singlet flavons Q.U,E~2,91,, (4.9
@le 0 5’ @Nsw 0 O D1L~21€B11,
M; 2 l—-¢ 07 My tlo € , _ . . .
while the Higgs fields and the right-handed neutrinos trans-
<¢3>~2~(0) <¢1>~2~(e’) form as
M 2 lel My T lo) Hu o~ 1o, (4.10
€ ~20®1;.
<|3|’4> ~24~( . 4.6 VR~ 20D 13
' Proceeding as before, the various Yukawa and mass matrices
and thus arrive at the correct textures oy r and M gg: have the transformation properties:
A o 0 € € v [3_,01 5] [21])
MLR”( (; 01) ~| —€ 0 0 |(Hy), (47 N [2-4] [1o] )
3
0 e O
v ([32@12] [22])
s o 0 € P (2.4 [14)
1 4
M oo~ ~1 0 € € |Ax. 4.8
" (¢>4 0 ) , v 49 ([3_2@1_2] [2_1])
€ € 0 Y.~ ,
[2-2] [1-4]
Notice that theZs charge assignments of the new flavons
prevent them from affecting the lowest-order textures for [3-181 1] [2-4]
Yy, Yp, andYg. Thus, the predictions of the minimal uni- Mir~ [2_4] [1_4])°

fied U(2) model are maintained. The pattern of VEV's in the
doublet flavons is a dynamical assumption, at the level of our [3,] [2_a]
effective field theory analysis, but is at least well motivated: RR~< ) )

it is known that minima of potentials occur at enhanced sym- [2-3] [1-¢]

metry points, and the pattern of VEV’s is one consistent with

the sequential breaking in E6L.2). Presumably, an explicit Ve introduce the set of flavons

high-energy model would involve a complicated flavon po- ,
tential, and different patterns efande’ might arise depend- @~3 ~<0 0) (Ap) -1 ~< 0 € )
. . L . . . 0 y -1 )
ing on differing parameter choices. We do not consider this M; 0 € M —-€e 0

(4.1
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C. Discrete subgroups

Finally, we mention briefly that any of the models we
have discusse¢and in fact any 2) model described in the
literature[21]) can be mapped to an equivalent model based
on the discrete group’. For example, one possible mapping
is

3-3 2527 1-1°

where the notation fof’ representations shown on the right
is explained in Refd.8,9]. Other mappings exist that render

a given model free of discrete gauge anomdl2#, at least

if the anomalies associated with Abelian factors are canceled
via the Green-Schwarz mechani§23]. Thus, realizations of
the textures we have studied in models with discrete gauge
flavor symmetries are also possilEor other approaches to
reproducing W2) physics from discrete groups, see Ref.

[24]]

V. CONCLUSIONS

In this paper, we have illustrated a simple point: Models
based on spontaneously broken non-Abelian symmetries can
naturally provide for two large neutrino mixing angles, even
while quark and charged lepton Yukawa textures are hierar-

as well as the neutrino Dirac and Majorana mass matrices chical. In particular, we have considered@Vlike textures—

(b-1) 0 (D_3) €
L1 ’ ~273~ ’
Mf € Mf €
(P_4) € (x-1)
Mf "‘2_4"" 0 y Mf ""1_1’\“6 (412
from which we obtain
) 0 ee’ 0
P21 tA_Ix—1 P , 2
U~ é 1 ~| —€e€ € €|,
-1 0 e 1
(4.13
) 0 e 0
(¢1+A1X1 b-1X-1 ,
D~ ¢ ~ € € | €,
-1 X-1 1 1
(4.14
) 0 e 0
o tAIx—1 Py ,
Yo~ & ~ € 1]e
-1X-1 X-1 0 e 1
(4.1
A 4 0 e €
MLR~< N _A)N —€ 0 0| (Hy),
$-1 O
e O
(4.19
s, & 0 0 €
MRRN< _3)"" 0 € AR'
¢-3 O )
e € 0
(4.1

textures that can arise in a variety of models that incorporate
the two-step breaking of a non-Abelian symmetry with a
subgroup that rotates first generation fields by a phase. We
showed how bimaximal mixing could be obtained in such
models without tuning of parameters, and how perturbations
about these textures, arising in realistic models, could quan-
titatively explain atmospheric and large-angle solar neutrino
oscillations. Finally, we presented a number of toy models
that reproduce the textures that we considered numerically in
our model-independent discussion. While these models are
viable, they nonetheless suggest that better high-energy real-
izations are yet to be found. The ideas presented here may

The U(1) charges in this model allow us to obtain the desiredtherefore be useful in the eventual formulation of a compel-

suppression factors il , without necessitating nontrivial

ling and comprehensive theory of fermion masses.

GUT transformation properties for the flavons, assuming a

GUT is present at all. While Eq$4.16) and(4.17) are of the

desired form for neutrino phenomenology, it should be noted
that this particular model also provides for a large 2-3 mix-

ing angle via the diagonalization of, . The numerical
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